26 research outputs found

    Assessing the repeatability of automated seafloor classification algorithms, with application in marine protected area monitoring

    Get PDF
    The number and areal extent of marine protected areas worldwide is rapidly increasing as a result of numerous national targets that aim to see up to 30% of their waters protected by 2030. Automated seabed classification algorithms are arising as faster and objective methods to generate benthic habitat maps to monitor these areas. However, no study has yet systematically compared their repeatability. Here we aim to address that problem by comparing the repeatability of maps derived from acoustic datasets collected on consecutive days using three automated seafloor classification algorithms: (1) Random Forest (RF), (2) K–Nearest Neighbour (KNN) and (3) K means (KMEANS). The most robust and repeatable approach is then used to evaluate the change in seafloor habitats between 2012 and 2015 within the Greater Haig Fras Marine Conservation Zone, Celtic Sea, UK. Our results demonstrate that only RF and KNN provide statistically repeatable maps, with 60.3% and 47.2% agreement between consecutive days. Additionally, this study suggests that in low-relief areas, bathymetric derivatives are non-essential input parameters, while backscatter textural features, in particular Grey Level Co-occurrence Matrices, are substantially more effective in the detection of different habitats. Habitat persistence in the test area between 2012 and 2015 was 48.8%, with swapping of habitats driving the changes in 38.2% of the area. Overall, this study highlights the importance of investigating the repeatability of automated seafloor classification methods before they can be fully used in the monitoring of benthic habitat

    Autonomous marine environmental monitoring: Application in decommissioned oil fields

    Get PDF
    Hundreds of Oil & Gas Industry structures in the marine environment are approaching decommissioning. In most areas decommissioning operations will need to be supported by environmental assessment and monitoring, potentially over the life of any structures left in place. This requirement will have a considerable cost for industry and the public. Here we review approaches for the assessment of the primary operating environments associated with decommissioning — namely structures, pipelines, cuttings piles, the general seabed environment and the water column — and show that already available marine autonomous systems (MAS) offer a wide range of solutions for this major monitoring challenge. Data of direct relevance to decommissioning can be collected using acoustic, visual, and oceanographic sensors deployed on MAS. We suggest that there is considerable potential for both cost savings and a substantial improvement in the temporal and spatial resolution of environmental monitoring. We summarise the trade-offs between MAS and current conventional approaches to marine environmental monitoring. MAS have the potential to successfully carry out much of the monitoring associated with decommissioning and to offer viable alternatives where a direct match for the conventional approach is not possible

    Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining

    Get PDF
    Abyssal polymetallic nodule fields constitute an unusual deep‐sea habitat. The mix of soft sediment and the hard substratum provided by nodules increases the complexity of these environments. Hard substrata typically support a very distinct fauna to that of seabed sediments, and its presence can play a major role in the structuring of benthic assemblages. We assessed the influence of seafloor nodule cover on the megabenthos of a marine conservation area (area of particular environmental interest 6) in the Clarion Clipperton Zone (3950–4250 m water depth) using extensive photographic surveys from an autonomous underwater vehicle. Variations in nodule cover (1–20%) appeared to exert statistically significant differences in faunal standing stocks, some biological diversity attributes, faunal composition, functional group composition, and the distribution of individual species. The standing stock of both the metazoan fauna and the giant protists (xenophyophores) doubled with a very modest initial increase in nodule cover (from 1% to 3%). Perhaps contrary to expectation, we detected little if any substantive variation in biological diversity along the nodule cover gradient. Faunal composition varied continuously along the nodule cover gradient. We discuss these results in the context of potential seabed‐mining operations and the associated sustainable management and conservation plans. We note in particular that successful conservation actions will likely require the preservation of areas comprising the full range of nodule cover and not just the low cover areas that are least attractive to mining

    Biological effects 26 years after simulated deep-sea mining

    Get PDF
    The potential for imminent abyssal polymetallic nodule exploitation has raised considerable scientific attention. The interface between the targeted nodule resource and sediment in this unusual mosaic habitat promotes the development of some of the most biologically diverse communities in the abyss. However, the ecology of these remote ecosystems is still poorly understood, so it is unclear to what extent and timescale these ecosystems will be affected by, and could recover from, mining disturbance. Using data inferred from seafloor photo-mosaics, we show that the effects of simulated mining impacts, induced during the “DISturbance and reCOLonization experiment” (DISCOL) conducted in 1989, were still evident in the megabenthos of the Peru Basin after 26 years. Suspension-feeder presence remained significantly reduced in disturbed areas, while deposit-feeders showed no diminished presence in disturbed areas, for the first time since the experiment began. Nevertheless, we found significantly lower heterogeneity diversity in disturbed areas and markedly distinct faunal compositions along different disturbance levels. If the results of this experiment at DISCOL can be extrapolated to the Clarion-Clipperton Zone, the impacts of polymetallic nodule mining there may be greater than expected, and could potentially lead to an irreversible loss of some ecosystem functions, especially in directly disturbed areas

    Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic?

    Get PDF
    Animal migrations are of global ecological significance, providing mechanisms for the transport of nutrients and energy between distant locations. In much of the deep sea (>200 m water depth), the export of nutrients from the surface ocean provides a crucial but seasonally variable energy source to seafloor ecosystems. Seasonal faunal migrations have been hypothesized to occur on the deep seafloor as a result, but have not been documented. Here, we analyse a 7.5‐year record of photographic data from the Deep‐ocean Environmental Long‐term Observatory Systems seafloor observatories to determine whether there was evidence of seasonal (intra‐annual) migratory behaviours in a deep‐sea fish assemblage on the West African margin and, if so, identify potential cues for the behaviour. Our findings demonstrate a correlation between intra‐annual changes in demersal fish abundance at 1,400 m depth and satellite‐derived estimates of primary production off the coast of Angola. Highest fish abundances were observed in late November with a smaller peak in June, occurring approximately 4 months after corresponding peaks in primary production. Observed changes in fish abundance occurred too rapidly to be explained by recruitment or mortality, and must therefore have a behavioural driver. Given the recurrent patterns observed, and the established importance of bottom‐up trophic structuring in deep‐sea ecosystems, we hypothesize that a large fraction of the fish assemblage may conduct seasonal migrations in this region, and propose seasonal variability in surface ocean primary production as a plausible cause. Such trophic control could lead to changes in the abundance of fishes across the seafloor by affecting secondary production of prey species and/or carrion availability for example. In summary, we present the first evidence for seasonally recurring patterns in deep‐sea demersal fish abundances over a 7‐year period, and demonstrate a previously unobserved level of dynamism in the deep sea, potentially mirroring the great migrations so well characterized in terrestrial systems

    Monitoring mosaic biotopes in a marine conservation zone by autonomous underwater vehicle

    Get PDF
    The number of marine protected areas (MPAs) has increased dramatically in the last decade and poses a major logistic challenge for conservation practitioners in terms of spatial extent and the multiplicity of habitats and biotopes that now require assessment. Photographic assessment by autonomous underwater vehicle (AUV) enables the consistent description of multiple habitats, in our case including mosaics of rock and sediment. As a case study, we used this method to survey the Greater Haig Fras marine conservation zone (Celtic Sea, northeast Atlantic). We distinguished 7 biotopes, detected statistically significant variations in standing stocks, species density, species diversity, and faunal composition, and identified significant indicator species for each habitat. Our results demonstrate that AUV‐based photography can produce robust data for ecological research and practical marine conservation. Standardizing to a minimum number of individuals per sampling unit, rather than to a fixed seafloor area, may be a valuable means of defining an ecologically appropriate sampling unit. Although composite sampling represents a change in standard practice, other users should consider the potential benefits of this approach in conservation studies. It is broadly applicable in the marine environment and has been successfully implemented in deep‐sea conservation and environmental impact studies. Without a cost‐effective method, applicable across habitats, it will be difficult to further a coherent classification of biotopes or to routinely assess their conservation status in the rapidly expanding global extent of MPAs

    Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications

    Get PDF
    This paper recommends best practice for the use of open nomenclature (ON) signs applicable to image-based faunal analyses. It is one of numerous initiatives to improve biodiversity data input to improve the reliability of biological datasets and their utility in informing policy and management. Image-based faunal analyses are increasingly common but have limitations in the level of taxonomic precision that can be achieved, which varies among groups and imaging methods. This is particularly critical for deep-sea studies owing to the difficulties in reaching confident species-level identifications of unknown taxa. ON signs indicate a standard level of identification and improve clarity, precision and comparability of biodiversity data. Here we provide examples of recommended usage of these terms for input to online databases and preparation of morphospecies catalogues. Because the processes of identification differ when working with physical specimens and with images of the taxa, we build upon previously provided recommendations for specific use with image-based identifications

    Monitoring mosaic biotopes in a marine conservation zone by autonomous underwater vehicle

    No full text
    The extent of marine protected areas (MPAs) has increased dramatically in the last decade, and poses a major logistic challenge for conservation practitioners in terms of spatial extent and the multiplicity of habitats and biotopes that now require assessment. Here we demonstrate a single field method, photographic assessment by autonomous underwater vehicle (AUV) that enables the consistent description of multiple habitats, in our case including mosaics of rock and sediment. We describe a case study in the Greater Haig Fras marine conservation zone (Celtic Sea, NE Atlantic) where we distinguished seven biotopes, detected statistically significant variations in standing stocks, species density, species diversity, and faunal composition, and identified significant indicator species for each habitat. Our results demonstrate that AUV-based photography can produce robust data for ecological research and practical marine conservation. We note that standardizing to a minimum number of individuals per sampling unit, rather than to a fixed seafloor area, may be a valuable means of defining an ecologically appropriate sampling unit. Although representing a change in ‘standard practise’, we suggest that other users consider the potential benefits of this approach in their own conservation studies. The approach is broadly applicable in the marine environment, and has already been successfully implemented in deep-sea conservation and impact studies. It is clear that without a cost-effective methodology, applicable across habitats, it will be difficult to progress a coherent classification of biotopes, or to routinely assess their conservation status, in the rapidly expanding global extent of MPAs

    Mass falls of crustacean carcasses link surface waters and the deep seafloor

    No full text
    Massive swarms of the red crab, Pleuroncodes planipes (Stimpson 1860), a species of squat lobster, are a dominant functional component of the upwelling ecosystem in the eastern Pacific Ocean (Boyd 1967, Smith et al. 1975). These swarms can wash ashore on the coast creating mass depositions of crustacean carcasses, a striking phenomenon that has been long documented in Baja California and California (Boyd 1967, Aurioles-Gamboa et al. 1994). However, little is known about the fate of crab swarms transported offshore by oceanic currents. In May 2015, using an autonomous deep-sea robot, we discovered an unexpectedly large fall of red crab carcasses (> 1000 carcasses ha-1 ) at 4050 m depth on the abyssal Pacific seafloor (Fig. 1), almost 1500 km away from their spawning areas off the NW American coast. Several questions arise from this novel finding that may help unveil additional close linkages in nutritional transport between processes at the sea surface and the remote abyssal seafloor

    High-resolution visual seafloor mapping and classification using long range capable AUV for ship-free benthic surveys

    No full text
    BioCam is a 4000 m depth rated high-resolution mapping instrument that uses lasers, strobes and cameras to generate multi-hectare 3D reconstructions of the seafloor at sub-centimetre resolution. These can be used to analyse seafloor ecology as well as the fine-scale features of seafloor terrains. BioCam was first deployed with the autonomous underwater vehicle (AUV) Autosub Long Range (ALR), also known as "Boaty McBoatface", in July 2022 using the research vessel RRS Discovery. During several dives a total of 80 ha of seafloor in the Greater Haig Fras and the South West Deeps (East) Marine Conservation Zones (MCZ) were visually mapped from altitudes between 4 and 5.5 m and sub-centimetre resolution bathymetry maps were generated. During the cruise, the AUV and BioCam were left onsite while the ship travelled to a new location, and both systems were controlled via satellite communication to upload new missions and confirm data quality, demonstrating the over-the-horizon operation capability needed to enable future ship-free deployments
    corecore